Question 12

Not yet answered
Marked out of 2.00
P Flag question

The slope of the tangent to the curve
$f(x)=\frac{2}{x}-\frac{3}{x^{5}}$ at $x=1$ is

Select one:
○. -17
Ob. 1
○. 13
○ d. 5
○ e. 17
○ f. None
O g. -13

ITC

Time left 1:23:20

Question 11

Not yet answered
Marked out of 2.00
P Flag question

Suppose that $f(x)=\frac{g(x)}{x^{2}}, g(2)=2$, and $g^{\prime}(2)=-2$. Find $f^{\prime}(2)$.

Select one:
O a. $\frac{1}{16}$
Ob. $-\frac{1}{16}$
O c. None
○ d. 0
○ e. 1
○ f. -1

Question 19

Not yet answered
Marked out of 2.00
P Flag question

$$
\int 2\left(\frac{1}{\sqrt{x}}+\frac{1}{x}\right) d x=
$$

Select one:
O a. Noneb. $\frac{1}{x^{3 / 2}}-\frac{1}{x^{2}}+c$c. $4 \sqrt{x}+2 \ln |x|+c$d. $\frac{\sqrt{x}}{2}+\ln |x|+c$e. $\sqrt{x}+\ln |x|+c$

Question 20

Not yet answered
Marked out of 2.00
P Flag question

Suppose a company is considering an increase in price of its product. If doing so results in an increase in revenues, at this value of price the demand

Select one:a. Elasticb. Inelasticc. Unitary elastic

Not yet answered
Marked out of 2.00
Flag question

If $30 p=\ln \left(\frac{q}{q^{2}+1}\right)$, q is quantity demanded at price p, find the rate of change of q with respect to p at $q=4$. (write a number only)

Answer:

Question 14

Not yet answered
Marked out of 2.00
Flag question

Find the slope of the tangent to the curve
$x^{2}+4 x-3 y^{2}=0$ at the point $(2,2)$.a. Noneb. $\frac{2}{3}$C. $\frac{3}{4}$d. $\frac{4}{3}$e. 1

Not yet answered

Marked out of 2.00
1 Flag question

Suppose that $f(x)=\frac{g(x)}{x^{2}}, g(2)=2$, and $g^{\prime}(2)=-2$. Find $f^{\prime}(2)$.

Select one:
O a. $\frac{1}{16}$b. $-\frac{1}{16}$c. Noned. 0

○ e. 1
© f. -1
Clear my choice

Question 12

Not yet answered
Marked out of 2.00
1 Flag question

The slope of the tangent to the curve
$f(x)=\frac{2}{x}-\frac{3}{x^{5}}$ at $\mathbf{x}=1$ is
Select one:a. -17

Ob. 1
O c. 13
Od. 5
O e. 17
O f. None
O g. -13
Clear my choice

$$
\int \frac{6(\ln x)^{2}}{x} d x=
$$

Select one:a. Noneb. $\frac{(\ln x)^{3}}{3}+C$c. $\frac{(\ln x)^{3}}{x}+C$d. $\frac{\ln x^{3}}{3}+C$e. $3 \ln x+C$f. $2(\ln x)^{3}+c$

Question 22

Not yet answered
Marked out of 2.00
P Flag question

Find the present value (to the nearest integer)of $\$ 40000$ due in 4 years at an interest rate of 8% compounded semiannually.

Select one:a. \$29401b. $\$ 31445$c. $\$ 30212$d. $\$ 29228$e. \$27112

ITC

Time left 1:23:56

Question 9

Not yet answered
Marked out of 2.00
P Flag question

$$
\text { If } h(x)=\frac{f(x)}{g(x)}, f(5)=5, g(5)=2, f^{\prime}(5)=-1 \text { and } g^{\prime}(5)=-6, \text { then } h^{\prime}(5)=
$$

- a. 7
b. - 8

○c. 8
O d. -7
O e. None
f. 14

Clear my choice

Question 10
 Not yet answered
 Marked out of 2.00
 P Flag question

A market shortage occurs when

O a. Quantity demand equals quantity supplied.
O b. None

- c. Quantity demanded is greater than quantity supplied

O d. Quantity demanded is less than quantity supplied
Clear my choice

Next page

Quiz navigation

Question 18

Not yet answered
Marked out of 2.00
P Flag question

The demand far caused by the 45th unit is *

```
R'(45)
```

Option 1
$R^{\prime}(44)$

Option 2

$$
R(45)-R(44)
$$

Option 3

$$
R^{\prime}(46)-R^{\prime}(45)
$$

Option 4

Question 10

Not yet answered
Marked out of 2.00
P Flag question

A market shortage occurs when
O. Quantity demand equals quantity supplied.

Ob. None
C. Quantity demanded is greater than quantity supplied

O d. Quantity demanded is less than quantity supplied

Question 9

Not yet answered
Marked out of 2.00
P Flag question

If $h(x)=\frac{f(x)}{g(x)}, f(5)=5, g(5)=2, f^{\prime}(5)=-1$ and $g^{\prime}(5)=-6$, then $h^{\prime}(5)=$a. 7b. -8c. 8d. - 7
e. None
f. 14

Question 10

Not yet answered
Marked out of 2.00
P Flag question

A market shortage occurs when

a. Quantity demand equals quantity supplied.b. Nonec. Quantity demanded is greater than quantity suppliedd. Quantity demanded is less than quantity supplied
Math235 Evaluation 1

*Required

Choose the correct answer

2 points
$f(x)=\left(x^{2}+3 x-2\right)^{3}$, then $f^{\prime}(x)=$

$$
3\left(x^{2}+3 x-2\right)(2 x+3)
$$

Option 1

(O) Option 2

$$
4 x^{3}+9 x^{2}
$$

Option 3

$$
3(2 x+3)^{2}
$$

If $f(x)$ and $g(x)$ are two functions such that * 2 points
$\lim _{x \rightarrow 2} f(x)=4, \lim _{x \rightarrow 2} g(x)=-5$, then $\lim _{x \rightarrow 2}(f(x)-2 g(x))=$
O-1
O 9
O 14
O 6

Find $\mathrm{f}(4)$ if $f(x)= \begin{cases}-x+5, & x>4 \\ x^{2}-2 x, & x \leq 4\end{cases}$
○ 4
○ 8
○ 24
Undefined
$f(x)=\frac{x+4}{x-4}, f^{\prime}(x)=$

$$
\frac{8}{(x-4)^{2}}
$$

Option 1
-8
$(x-4)$

Option 2

$$
\frac{-8}{(x-4)^{2}}
$$

If $\mathrm{f}(\mathrm{x})$ is a continuous function and $\lim _{x \rightarrow 5} f(x)=2$, then $f(5)=2$

- True

O False

Let $R(x)$ be the revenue function for $a \quad 2$ points product, then the exact increase in revenue caused by the 45th unit is *

$R^{\prime}(45)$

Option 1

Option 2

(Option 3

